Limit Problems for Interpolation by Analytic Radial Basis Functions
نویسنده
چکیده
Interpolation by analytic radial basis functions like the Gaussian and inverse multiquadrics can degenerate in two ways: the radial basis functions can be scaled to become “increasingly flat”, or the data points “coalesce” in the limit while the radial basis functions stays fixed. Both cases call for a careful regularization. If carried out explicitly, this yields a preconditioning technique for the degenerating linear systems behind such interpolation problems. This paper deals with both degeneration cases. For the “increasingly flat” limit, we recover results by Larsson and Fornberg together with Lee, Yoon, and Yoon concerning convergence of interpolants towards polynomials. With slight modifications, the same technique also allows to handle scenarios with coalescing data points for fixed radial basis functions. The results show that the degenerating local Lagrange interpolation problems converge towards certain Hermite-Birkhoff problems. This is an important prerequisite for dealing with approximation by radial basis functions adaptively, using freely varying data sites.
منابع مشابه
Approximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملBuckling of Doubly Clamped Nano-Actuators in General form Through Spectral Meshless Radial Point Interpolation (SMRPI)
The present paper is devoted to the development of a kind of spectral meshless radial point interpolation (SMRPI) technique in order to obtain a reliable approximate solution for buckling of nano-actuators subject to different nonlinear forces. To end this aim, a general type of the governing equation for nano-actuators, containing integro-differential terms and nonlinear forces is considered. ...
متن کاملThe method of radial basis functions for the solution of nonlinear Fredholm integral equations system.
In this paper, An effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (RBFs). We present an algorithm based on interpolation by radial basis functions including multiquadratics (MQs), using Legendre-Gauss-Lobatto nodes and weights. Also a theorem is proved for convergence of the algorithm. Some numerical examples are presented...
متن کاملA meshless technique for nonlinear Volterra-Fredholm integral equations via hybrid of radial basis functions
In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...
متن کاملMultivariate Interpolation by Polynomials and Radial Basis Functions
In many cases, multivariate interpolation by smooth radial basis functions converges towards polynomial interpolants, when the basis functions are scaled to become “wide”. In particular, examples show that interpolation by scaled Gaussians seems to converge towards the de Boor/Ron “least” polynomial interpolant. The paper starts by providing sufficient criteria for the convergence of radial int...
متن کامل